[1] Bhuiyan DB, Middleton JC, Tannenbaum R, et al. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds [J]. Biomed Mater Eng, 2017, 28(6): 671-685. [2] 贺钧,李自良,谢志刚.骨替代材料的骨诱导性能研究进展[J].口腔疾病防治,2018,26(2): 124-127. [3] Chae T, Yang H, Leung V, et al. Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration [J]. J Mater Sci Mater Med, 2013, 24(8): 1885-1894. [4] Tae YA, Kang JH, Kang DJ, et al. Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration [J]. Int J Biol Macromol, 2016, 93(Pt B): 1488-1491. [5] Ganesh N, Ashokan A, Rajeshkannan R, et al. Magnetic resonance functional nano-hydroxyapatite incorporated poly(caprolactone) composite scaffolds for in situ monitoring of bone tissue regeneration by MRI [J]. Tissue Eng Part A, 2014, 20(19-20): 2783-2794. [6] Zhang D, Liu D, Zhang J, et al. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway [J]. Mater Sci Eng C Mater Biol Appl, 2014, 42: 70-77. [7] Vieira S, Vial S, Maia FR, et al. Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering [J]. RSC Adv, 2015, 5(95): 77996-78005. [8] Chen L, Hu J, Shen X, et al. Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering [J]. J Mater Sci Mater Med, 2013, 24(8): 1843-1851. [9] Li X, Gao H, Uo M, et al. Effect of carbon nanotubes on cellular functions in vitro [J]. J Biomed Mater Res A, 2009, 91(1): 132-139. [10] Lim KT, Seonwoo H, Choi KS, et al. Pulsed-electromagnetic-field-assisted reduced graphene oxide substrates for multidifferentiation of human mesenchymal stem cells [J]. Adv Healthc Mater, 2016, 5(16): 2069-2079. [11] Wang Q, Chen B, Cao M, et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs [J]. Biomaterials, 2016, 86: 11-20. [12] Huang DM, Hsiao JK, Chen YC, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles [J]. Biomaterials, 2009, 30(22): 3645-3651. [13] Wang Q, Chen B, Ma F, et al. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2 [J]. Nano Res, 2017, 10(2): 626-642. [14] Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle [J]. J Biomed Mater Res, 1973, 7(3): 25-42. [15] Leite J, Caridade SG, Mano JOF. Synthesis and characterization of bioactive biodegradable chitosan composite spheres with shape memory capability [J]. Journal of Non-Crystalline Solids,2016, 432: 158-166. [16] Monteiro N, Martins A, Ribeiro D, et al. On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells [J]. J Tissue Eng Regen Med, 2015, 9(9): 1056-1066. [17] Zhou TH, Su M, Shang BC, et al. Nano-hydroxyapatite/beta-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms [J]. Drug Dev Ind Pharm, 2012, 38(11): 1298-1304. [18] Marquez L, de Abreu FA, Ferreira CL, et al. Enhanced bone healing of rat tooth sockets after administration of epidermal growth factor (EGF) carried by liposome [J]. Injury, 2013, 44(4): 558-564. [19] Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering [J]. Biomaterials, 2003, 24(12): 2077-2082. [20] Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold [J]. Tissue Engineering, 2004, 10(1-2): 33-41. [21] Oliveira JM, Sousa RA, Malafaya PB, et al. In vivo study of dendronlike nanoparticles for stem cells “tune-up”: from nano to tissues [J]. Nanomedicine, 2011, 7(6): 914-924. |