[1] Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges [J]. Crit Rev Biomed Eng, 2012, 40(5)∶363-408 [2] Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering [J]. Biomaterials, 2011, 32(36)∶9622-9629 [3] Harvey EJ, Henderson JE, Vengallatore ST. Nanotechnology and bone healing [J]. J Orthop Trauma, 2010, 24, 1(3)∶25-30 [4] Yang X, Chen X, Wang H. Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds [J]. Biomacromolecules, 2009, 10(10)∶2772-2778 [5] Asli MM, Pourdeyhimi B, Loboa EG. Release profiles of tricalcium phosphate nanoparticles from poly(L-lactic acid) electrospun scaffolds with single component, core-sheath, or porous fiber morphologies: effects on hASC viability and osteogenic differentiation [J]. Macromol Biosci, 2012, 12(7)∶893-900 [6] Chen R, Huang C, Ke Q, et al. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications [J]. Colloids Surf B Biointerfaces, 2010, 79(2)∶315-325 [7] Briggs T, Arinzeh TL. Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers [J]. J Biomed Mater Res A, 2014, 102(3)∶674-684 [8] Mcclellan P, Landis WJ. Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering [J]. Biores Open Access, 2016, 5(1)∶212-227 [9] Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix [J]. J Biomed Mater Res, 1999, 46(1)∶60-72 [10] 刘瑞来, 陈良壁, 唐春怡. 三维纳米纤维组织工程支架的研究进展[J].德州学院学报, 2014, 30(4)∶57-62 [11] Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres [J]. J Biomed Mater Res A, 2006, 78A(2)∶306-315 [12] Chen VJ, Smith LA, Ma PX. Bone regeneration on computer-designed nano-fibrous scaffolds [J]. Biomaterials, 2006, 27(21)∶3973-3979 [13] Akbarzadeh R, Yousefi AM. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering [J]. J Biomed Mater Res B Appl Biomater, 2014, 102(6)∶1304-1315 [14] Guo J, Liu X, Lee MA, et al. Novel porous poly(propylene fumarate-co-caprolactone) scaffolds fabricated by thermally induced phase separation [J]. J Biomed Mater Res A, 2016, 105(1)∶226-235 [15] 张震, 李莹, 耿亚伟,等. 纳米支架及合成技术在神经组织再生的应用[J].口腔医学研究,2017,33(4)∶459-462 [16] 何彬, 袁霄, 张华,等. 自组装肽纳米纤维支架用于骨修复的研究进展[J].中国修复重建外科杂志,2014,28(10)∶1303-1306 [17] He B, Ou Y, Zhou A, et al. Functionalizedd-form self-assembling peptide hydrogels for bone regeneration [J]. Drug Des Devel Ther, 2016, 10(1)∶1379-1388 [18] Wang Z, Dong L, Han L, et al. Self-assembled biodegradable nanoparticles and polysaccharides as biomimetic ECM nanostructures for the synergistic effect of RGD and BMP-2 on bone formation [J]. Sci Rep, 2016, 6∶25090 [19] Igwe JC, Mikael PE, Nukavarapu SP. Design, fabrication and in vitro, evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering [J]. J Tissue Eng Regen Med, 2014, 8(2)∶131-142 [20] Lee SH, Lim YM, Jeong SI, et al. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration [J]. J Adv Prosthodont, 2015, 7(6)∶484-495 [21] Lee YJ, An SJ, Bae EB, et al. The effect of thickness of resorbable bacterial cellulose membrane on guided bone regeneration [J]. Materials (Basel), 2017, 10(3) ,pii: E320 [22] Saska S, Barud HS, Gaspar AM, et al. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration [J]. Int J Biomater,2011, 2011∶1-8 [23] Grande CJ, Torres FG, Gomez CM, et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications [J]. Acta Biomater, 2009, 5(5)∶1605-1615 [24] Helenius G, Bäckdahl H, Bodin A, et al. In vivo biocompatibility of bacterial cellulose [J]. J Biomed Mater Res A, 2006, 76A(2)∶431-438 [25] Zhijiang C, Chengwei H, Guang Y. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application [J]. J Polym Res, 2011, 18(4)∶739-744 |