Journal of Oral Science Research ›› 2022, Vol. 38 ›› Issue (2): 99-103.DOI: 10.13701/j.cnki.kqyxyj.2022.02.001
CHEN Jiang*, LIN Yanjun
Received:
2022-01-10
Online:
2022-02-28
Published:
2022-02-23
CHEN Jiang, LIN Yanjun. Association of Adaptive Immune Cells and Primary Sjögren's Syndrome[J]. Journal of Oral Science Research, 2022, 38(2): 99-103.
[1] Spachidou MP, Bourazopoulou E, Maratheftis CI, et al. Expression of functional Toll-like receptors by salivary gland epithelial cells: increased mRNA expression in cells derived from patients with primary Sjögren's syndrome [J]. Clin Exp Immunol, 2007, 147(3):497-503. [2] Mitsias DI, Tzioufas AG, Veiopoulou C, et al. The Th1/Th2 cytokine balance changes with the progress of the immunopathological lesion of Sjögren's syndrome [J]. Clin Exp Immunol, 2002, 128(3): 562-568. [3] Karabiyik A, Peck AB, Nguyen CQ. The important role of T cells and receptor expression in Sjögren's syndrome [J]. Scand J Immunol, 2013, 78(2): 157-166. [4] Maehara T, Moriyama M, Hayashida JN, et al. Selective localization of T helper subsets in labial salivary glands from primary Sjögren's syndrome patients [J]. Clin Exp Immunol, 2012, 169(2): 89-99. [5] Hartenstein B, Teurich S, Hess J, et al. Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB [J]. EMBO J, 2002, 21(23): 6321-6329. [6] Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells [J]. Cell, 1997, 89(4): 587-596. [7] Brayer JB, Cha S, Nagashima H, et al. IL-4-dependent effector phase in autoimmune exocrinopathy as defined by the NOD.IL-4-gene knockout mouse model of Sjögren's syndrome [J]. Scand J Immunol, 2001, 54(1-2): 133-140. [8] Gao J, Killedar S, Cornelius JG, et al. Sjögren's syndrome in the NOD mouse model is an interleukin-4 time-dependent, antibody isotype-specific autoimmune disease [J]. J Autoimmun, 2006, 26(2): 90-103. [9] Crane Isabel J, Forrester John V. Th1 and Th2 lymphocytes in autoimmune disease [J]. Crit Rev Immunol, 2005, 25(2): 75-102. [10] Ciccia F, Guggino G, Rizzo A, et al. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjogren's syndrome [J]. Ann Rheum Dis, 2012, 71(2): 295-301. [11] Fei Y, Zhang W, Lin D, et al. Clinical parameter and Th17 related to lymphocytes infiltrating degree of labial salivary gland in primary Sjögren's syndrome [J]. Clin Rheumatol, 2014, 33(4): 523-529. [12] Katsifis GE, Rekka S, Moutsopoulos NM, et al. Systemic and local interleukin-17 and linked cytokines associated with Sjögren's syndrome immunopathogenesis [J]. Am J Pathol, 2009, 175(3): 1167-1177. [13] Luckheeram RV, Zhou R, Verma AD, et al. CD4+T cells: differentiation and functions [J]. Clin Dev Immunol, 2012, 2012: 925135. [14] Li L, He J, Zhu L, et al. The clinical relevance of IL-17-producing CD4+CD161+ cell and its subpopulations in primary Sjögren's syndrome [J]. J Immunol Res, 2015, 2015: 307453. [15] Alunno A, Carubbi F, Bistoni O, et al. CD4-CD8-T-cells in primary Sjögren's syndrome: Association with the extent of glandular involvement [J]. J Autoimmun, 2014, 51: 38-43. [16] Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm [J]. Int Immunol, 2016, 28(4): 163-171. [17] Sarigul M, Yazisiz V, Bassorgun CI, et al. The numbers of Foxp3+ Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjögren's syndrome [J]. Lupus, 2010, 19(2): 138-145. [18] Christodoulou MI, Kapsogeorgou EK, Moutsopoulos NM, et al. Foxp3+ T-regulatory cells in Sjogren's syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors [J]. Am J Pathol, 2008, 173(5): 1389-1396. [19] van den Berg WB, McInnes IB. Th17 cells and IL-17 a--focus on immunopathogenesis and immunotherapeutics [J]. Semin Arthritis Rheum, 2013, 43(2): 158-170. [20] Lin X, Rui K, Deng J, et al. Th17 cells play a critical role in the development of experimental Sjögren's syndrome [J]. Ann Rheum Dis, 2015, 74(6): 1302-1310. [21] Vinuesa CG, Linterman MA, Yu D, et al. Follicular helper T cells [J]. Annu Rev Immunol, 2016, 34: 335-368. [22] Pontarini E, MurrayBrown W, Croia C, et al. Enrichment of T follicular-helper cells (TFH) and exclusion of t follicular-regulatory cells (TFR) from ectoPIC germinal centers in salivary glands of sjogren's syndrome patients [J]. Ann Rheum Dis, 2017, 76(Suppl 2): 180-180. [23] Fonseca VR, Romão VC, Agua-Doce A, et al. The ratio of blood T follicular regulatory cells to T follicular helper cells marks ectopic lymphoid structure formation while activated follicular helper T cells indicate disease activity in primary Sjögren's syndrome [J]. Arthritis Rheumatol, 2018, 70(5):774-784. [24] Verstappen GM, Nakshbandi U, Mossel E, et al. Is the T follicular regulatory/T follicular helper cell ratio in blood a biomarker for ectopic lymphoid structure formation in Sjögren's syndrome? [J]. Arthritis Rheumatol, 2018, 70(8):1354-1355. [25] Szabo K, Papp G, Barath S, et al. Follicular helper T cells may play an important role in the severity of primary Sjögren's syndrome [J]. Clin Immunol, 2013, 147(2): 95-104. [26] King IL, Mohrs M. IL-4 producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells [J]. J Exp Med, 2009, 206(5):1001-1007. [27] Pontarini E, Murray-Brown WJ, Croia C, et al. Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjögren's syndrome with ectopic germinal centres and MALT lymphoma [J]. Ann Rheum Dis, 2020, 79(12): 1588-1599. [28] Gao CY, Yao Y, Li L, et al. Tissue-resident memory CD8+ T cells acting as mediators of salivary gland damage in a murine model of Sjögren's syndrome [J]. Arthritis Rheumatol, 2019, 71(1): 121-132. [29] Mingueneau M, Boudaoud S, Haskett S, et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren's signature correlating with disease activity and glandular inflammation [J]. J Allergy Clin Immunol, 2016, 137(6): 1809-1821.e12. [30] Tasaki S, Suzuki K, Nishikawa A, et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren's syndrome [J]. Ann Rheum Dis, 2017, 76(8):1458-1466. [31] Caldeira-Dantas S, Furmanak T, Smith C, et al. The chemokine receptor CXCR3 promotes CD8+ T cell accumulation in uninfected salivary glands but is not necessary after murine cytomegalovirus infection [J]. J Immunol, 2018, 200(3): 1133-1145. [32] Barr JY, Wang X, Meyerholz DK, et al. CD8 T cells contribute to lacrimal gland pathology in the nonobese diabetic mouse model of Sjögren syndrome [J]. Immunol Cell Biol, 2017, 95(8): 684-694. [33] Maruyama M, Lam KP, Rajewsky K. Memory B-cell persistence is independent of persisting immunizing antigen [J]. Nature, 2000, 407(6804): 636-642. [34] Giesecke C, Frölich D, Reiter K, et al. Tissue distribution and dependence of responsiveness of human antigen-specific memory B cells [J]. J Immunol, 2014,192(7): 3091-3100. [35] Steiniger B, Timphus EM, Jacob R, et al. CD27+ B cells in human lymphatic organs: re-evaluating the splenic marginal zone [J]. Immunology, 2005, 116(4): 429-442. [36] Amft N, Curnow SJ, Scheel-Toellner D, et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren's syndrome [J]. Arthritis Rheum, 2001, 44(11): 2633-2641. [37] Salomonsson S, Larsson P, Tengnér P, et al. Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjögren's syndrome [J]. Scand J Immunol, 2002, 55(4): 336-342. [38] Manzo A, Vitolo B, Humby F, et al. Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint [J]. Arthritis Rheum, 2008, 58(11): 3377-3387. [39] Rupprecht TA, Plate A, Adam M, et al. The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis [J]. J Neuroinflammation, 2009, 6: 42. [40] Sáez de Guinoa J, Barrio L, Mellado M, et al. CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics [J]. Blood, 2011, 118(6):1560-1569. [41] Fazilleau N, McHeyzer-Williams LJ, Rosen H, et al. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding [J]. Nat Immunol, 2009, 10(4): 375-384. [42] Moisini I, Davidson A. BAFF: a local and systemic target in autoimmune diseases [J]. Clin Exp Immunol, 2009, 158(2): 155-163. [43] Szyszko EA, Brokstad KA, Oijordsbakken G, et al. Salivary glands of primary Sjögren's syndrome patients express factors vital for plasma cell survival [J]. Arthritis Res Ther, 2011, 13(1): R2. [44] Tengnér P, Halse AK, Haga HJ, et al. Detection of anti-Ro/SSA and anti-La/SSB autoantibody-producing cells in salivary glands from patients with Sjögren's syndrome[J]. Arthritis Rheum, 1998, 41(12): 2238-2248. [45] Aqrawi LA, Brokstad KA, Jakobsen K, et al. Low number of memory B cells in the salivary glands of patients with primary Sjögren's syndrome [J]. Autoimmunity, 2012, 45(7): 547-555. [46] Szabó K, Papp G, Szántó A, et al. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren's syndrome and systemic lupus erythematosus [J]. Clin Exp Immunol, 2016, 183(1): 76-89. [47] Blair PA, Noreña LY, Flores-Borja F, et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients [J]. Immunity, 2010, 32(1):129-140. [48] Candando KM, Lykken JM, Tedder TF. B10 cell regulation of health and disease [J]. Immunol Rev, 2014, 259(1): 259-272. [49] Menon M, Blair PA, Isenberg DA, et al. A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus[J]. Immunity, 2016, 44(3): 683-697. [50] Lemoine S, Morva A, Youinou P, et al. Human T cells induce their own regulation through activation of B cells [J]. J Autoimmun, 2011, 36(3-4): 228-238. [51] Fogel O, Rivière E, Seror R, et al. Role of the IL-12/IL-35 balance in patients with Sjögren syndrome [J]. J Allergy Clin Immunol, 2018, 142(1): 258-268.e5. |
[1] | ZHENG Liuyun, JIA Peiru, CAI Yang. Preliminary Study on Role of Inducible Regulatory T Cells 35 in Etiology of Oral Lichen Planus [J]. Journal of Oral Science Research, 2022, 38(1): 76-79. |
[2] | ZHANG Xun, LIN Yuanyuan, TIAN Qunli. Static Orthodontic Pressure Regulates the Expression of MMP-2 and MMP-9 in Periodontal Ligament Cells via p38MAPK Pathway [J]. Journal of Oral Science Research, 2021, 37(4): 319-324. |
[3] | ZHOU Hejie, LI Shenghong, PENG Peizhao, TANG Rong, LI Ailian, ZENG Jin. Effects of Extracts from “Red Complex” Periodontal Pathogens on Osteogenic Differentiation Capacity of Human Periodontal Ligament Cells [J]. Journal of Oral Science Research, 2020, 36(9): 839-843. |
[4] | WANG Suwen, LAI Siyu, XI Lijun, WANG Lihong. Effect and Mechanism of Astragaloside on Regulating the Inflammatory Response and Osteogenic Differentiation of Human Periodontal Ligament Cells [J]. Journal of Oral Science Research, 2020, 36(2): 121-125. |
[5] | HAN Yakun, YU Chengcheng, YU Yan. Change of TGF-β+ Regulatory B Cells during Periodontitis [J]. Journal of Oral Science Research, 2020, 36(2): 135-138. |
[6] | HUANG Yizhi, GUO Jun, YANG Jian. Effects of Platelet-rich Fibrin Extract on Periodontal Ligament Cells [J]. Journal of Oral Science Research, 2020, 36(1): 41-45. |
[7] | LIANG Youde, WEI Wei, XUE Weiwei, ZHOU Ruiping, FU Runying, WANG Yining. Effect of Cyclic-tension Strain on mRNA Levels of Leukemia Inhibitory Factor and Leukemia Inhibitory Factor Receptor in Human Periodontal Ligament Cells [J]. Journal of Oral Science Research, 2019, 35(9): 863-867. |
[8] | CHENG Haiyan, SHEN Lanhua, ZHANG Rui, MENG Lingna, LIU Di, XING Beiyu, TAO Guannan. Estrogen and Progesterone Modulates Proliferation and Differentiation of Human Periodontal Ligament Cells [J]. Journal of Oral Science Research, 2019, 35(7): 657-660. |
[9] | MA Rui-jie, TAN Ya-qin, ZHOU Gang. IGF1-PI3K/mTOR Pathway Has Regulatory Effects on Cytokines in T cells and Keratinocytes Co-culture System [J]. Journal of Oral Science Research, 2019, 35(4): 397-400. |
[10] | ZHENG Guangming, ZHANG Jian, ZHANG Wenyi. Protective Effect of Low-frequency Magnetic Stimulation on Human Periodontal Ligament Cells Injured by High Glucose [J]. Journal of Oral Science Research, 2019, 35(12): 1177-1181. |
[11] | HUANG Ling-yan, YE Sheng-jia, YE Yan-ling, FANG Ping-juan. Research Progress on the Role of Krüppel-like Factors 4 in Odontoblast Differentiation and Oral Squamous Cell Carcinoma [J]. Journal of Oral Science Research, 2018, 34(7): 692-694. |
[12] | FAN Qin, GUAN Xiao-yan, LI Xiao-na, LIU Jian-guo.. Effect of Tea Polyphenols on ICAM-1 Expression in LPS-mediated Human Periodontal Ligament Fibroblast Cells. [J]. Journal of Oral Science Research, 2018, 34(10): 1089-1092. |
[13] | JIANG Si-qi, YIN Feng-ying, ZHANG Fan, WANG Min, XIA Hai-bin. Effect of Primary Cilia on Expression of Osteogenic-related Genes of Human Periodontal Ligament Cells [J]. Journal of Oral Science Research, 2018, 34(1): 10-13. |
[14] | CHENG Meng-wen, ZHOU Yi. Role of Micro-34a in Induced-mineralization of Human Periodontal Ligament Cells [J]. Journal of Oral Science Research, 2017, 33(9): 928-932. |
[15] | ZHAO Yuan, WANG Shu, SHAO Bo, GAO Ying. Effects of PTEN on Proliferation and Apoptosis of Periodontal Ligament Cells Induced by Hydrogen Peroxide. [J]. Journal of Oral Science Research, 2017, 33(8): 889-892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||